
Asymmetry of Cantorian Mathematics
from a categorial standpoint:
Is it related to the direction of time?

Zbigniew Semadeni

Abstract Category theory is symmetric in the sense that all definitions, the-
orems and proofs have uniquely defined duals, obtained by formal reversing of
arrows. In contrast, the products and coproducts in typical categories whose
objects are sets endowed with basic algebraic, topological etc. structures of
Cantorian Mathematics show a specific lack of symmetry.
A philosophical question is raised: What features of mathematics and math-
ematical thinking are related to this phenomenon? Some hints suggest that
this is related to the role of the concept of a function in mathematics and
the domination of many-to-one thinking. This in turn may be attributed to
implicit thinking in terms “causes precede the effects” and to the arrow of
time.

1 Introduction

Initially (since 1945) category theory was regarded as a convenient concep-
tual language for certain aspects of mathematical theories. Later, however,
new ideas developed by Lawvere and others showed that topos theory could
provide a unified framework for set theory, logic and a good part of mathe-
matics [12]. Consequently, category theory was viewed as a new contender for
a foundation of mathematics along with set theory, or — as Mac Lane would
put it — as a proposal for the organization of Mathematics [16, pp. 398–407],
[17, p. 331].
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The purpose of this paper1 is to use categorial concepts to highlight a cer-
tain feature of Cantorian Mathematics; this term refers here to basic mathe-
matical structures of algebra, topology, functional analysis etc. expressed in
terms of set theory, as they were conceived prior to the emergence of category
theory, i.e., by the middle of the 20th century. We will consider categories
in which objects are sets2 provided with specific structures, while morphisms
are structure preserving maps (homomorphisms, continuous maps etc.).

General category theory is fully symmetric in the sense that each defini-
tion, each theorem and each proof has its uniquely defined dual, obtained
by the process: reverse all arrows, that is, by the following replacements in
the theory:

• each expression of the type αβ = γ is replaced by βα = γ;
• in each morphism the word “domain” is replaced by “codomain” and

“codomain” is replaced by “domain”, that is, each α : A → B is replaced
by α : B → A;

• arrows and composites are reversed, while the logical terms are unchanged
[14], [15, pp. 31–33], [23].

Each statement of the theory has a unique dual statement, e.g., the dual of
“α is monic” (i.e., a monomorphism) is “α is epic”, and vice versa; the dual
of “A is an initial object” is “A is a terminal object”; the dual of a product
is a coproduct.

In an axiom system for category theory, the dual of each axiom is also an
axiom. Consequently, in any proof of a theorem, replacing each statement by
its dual gives a valid proof of the dual theorem. This is the duality principle
in category theory.

We will show that — from this point of view — Cantorian mathematics
is specifically asymmetric.

2 Products and coproducts

As a crucial example we consider the notion of a product of an indexed family
of objects {At}t∈T in a category E , defined as an object P together with a
family of morphisms {πt : P → At}t∈T (called projections) having the unique
factorization property: for every object X and every family of morphisms
{ξt : X → At}t∈T there exists a unique morphism θ : X → P such that the
diagrams commute, i.e., πtθ = ξt for t ∈ T . If a product exists, it is unique
up to commuting isomorphism.

1 The present paper is based on a talk delivered at the conference “Category Theory in
Physics, Mathematics and Philosophy“ held at the Warsaw University of Technology,
16-17 November 2017. Some ideas presented here were published in [22].
2 It is assumed here that all sets, functions, topological spaces etc. considered here
are small sets, [15, p. 22].
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A coproduct (also called a categorial sum) of a family of objects {At}t∈T
is defined dually as an object S together with a family of morphisms (called
injections) {σt : At → S}t∈T such that for every object X and every family
of morphisms {ξt : At → X}t∈T there exists a unique morphism θ : S → X
such that θσt = ξt for t ∈ T .

2.1 Products in certain categories of sets with
structures

Most of the following examples are concrete categories, i.e., categories E
equipped with a faithful functor U : E → Set. Symbols of specific cate-
gories used here generally follow those of [15, p. 12]. In the category Set of
(small) sets and functions, the product of {At}t∈T is the cartesian product
A =

∏
t∈T At with the coordinate projections πt : A→ At (t ∈ T ).

In the category Top of topological spaces and continuous maps, in its
full subcategory Comp of compact Hausdorff spaces, in the categories Set∗
of sets with selected base-points and base-point preserving functions, in the
analogous category Top∗, in the category Ord of partially ordered sets and
non-decreasing maps, in the categories Grp, Ab and AbComp of groups
(resp. abelian groups and compact abelian groups) and their homomorphisms
(resp. continuous homomorphisms) — in all these categories the product∏

t∈T At is the cartesian product endowed with a suitable structure (in Ord
it is the cardinal product in the sense of [2, I. §7], [23, 3.3.8]).

The category Ban1 of Banach spaces and linear contractions, i.e., linear
operators of norm ‖T‖ ≤ 1 (called also short linear operators), may appear
to be an exception to the rule, as the cartesian product of infinitely many
Banach spaces is not a Banach space. In fact, their product is the `∞-product
consisting of all {xt}t∈T , xt ∈ Xt, such that supt∈T ‖xt‖ < ∞. However,
this exception may be regarded as spurious. If we adjust the concept of the
carrier of the Banach space structure, replacing the whole vector space X
by its closed unit ball {x ∈ X : ‖x‖ ≤ 1} (which actually determines the
geometric structure of the whole space) and replacing the category Ban1 by
the category Ban© of closed unit balls and restrictions of linear contractions,
then the product object becomes simply the cartesian product of balls.

Another exception is the category AbTor of abelian torsion groups. The
direct product A =

∏
t∈T At of such groups need not be a torsion group, e.g.,

Z2 × Z3 × Z5 × . . . However, the torsion-subgroup P of A consisting of all
torsion elements (i.e., all elements of finite order) is a product in AbTor, [1,
10.20].
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2.2 Coproducts in the same categories

In contrast to the preceding, coproducts may be markedly different from each
other. This is clearly shown in the following Table 1.

In the categories Set, Top, Top∗, Comp and Set∗ coproducts are based
on the same construction, namely on the disjoint union A =

⊔
t∈T At, defined

as
⋃

t∈T (At×{t}), with obvious injections σt : At → A. In Top the coproduct⊔
t∈T At is equipped with the disjoint union topology [5, Ch. 2, §2, §4]; in

Top∗ the coproduct is the wedge sum, i.e., the quotient of the disjoint union
obtained by identifying the base points to a single point; in Comp copoducts
are the Stone–Čech compactifications of disjoint unions. In Ord it is the
cardinal sum [2, I. §7], [23, 3.3.10]).

However, in other categories coproducts may differ basically. In Grp the
coproduct is the free product of groups, whereas in its full subcategory Ab
the coproduct is the direct sum

⊕
At (called also the external direct sum);

thus the Ab-coproduct of two copies of the cyclic group Z is commutative,
whereas their Grp-coproduct is not commutative (moreover, its center is
trivial).

In AbComp the coproduct is the Bohr compactification ([11], [8, p. 430],
[9], [21, pp. 249–254]) of the direct sum

⊕
At, provided with a coproduct

topology [18]). This is particularly interesting in view of the Pontryagin du-
ality. A locally compact abelian group G is compact if and only if its dual
group Ĝ (the group of characters, i.e., continuous homomorphisms G→ R/Z)
is discrete [13, Ch. VII], [8, §24]; consequently, the category Ab (which may
be regarded as that of discrete abelian groups) is equivalent (in the sense of
[15, IV.4]) to the opposite category (i.e., dual) of AbComp. Thus, one might
expect a somehow “dual behavior” of their products and coproducts; yet, the
products in both categories are akin to Cartesian products and coproducts
to direct sums.

In the category C∗algcom1 of commutative C∗-algebras with units and
their homomorphisms, the product is an `∞-product while the coproduct

is the injective tensor product
̂̂⊗
At (called also the weak tensor product),

[21, pp. 355–361]. By the Gelfand duality theorem, C∗algcom1 is equivalent
to the dual of Comp [21, subsections 10.2, 12.6, 13.3], so the situation is
analogous to that with products and coproducts in Ab and AbComp.

In the category CRng of commutative rings with units and unit-preserving
ring homomorphisms the product of a family {Rt}t∈T is — as in any category
of algebras of the same type — the Cartesian product A =

∏
At with suitable

operations and coordinate projections, whereas the coproduct of this family
is the tensor product of rings

⊗
Rt (i.e., the tensor product over Z for rings

as Z-algebras, [20, p. 65]).
In the category Ban1 of Banach spaces and linear contractions the co-

product of a family {Xt}t∈T is its `1-sum consisting of all {xt}t∈T such that∑
t∈T ‖xt‖ <∞.
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Symbol of the category

objects

morphisms

Product

of a family {At}t∈T
of objects

Coproduct

of a family {At}t∈T
of objects

Set

sets

functions

Cartesian product∏
t∈T

At

disjoint union⊔
t∈T

At =
⋃
t∈T

(
At × {t}

)
Top

topological spaces

continuous maps

Cartesian product∏
At

with product topology

disjoint union⊔
At

At × {t} open-and-closed

Top•

pointed topological spaces

based maps

Cartesian product∏
At

with base point {•t}t∈T

wedge sum∨
At =

(⊔
At

)/
∼

with quotient topology

Comp

compact spaces

continuous maps

Cartesian product∏
At

with product topology

Stone-Čech compactification

of the disjoint union

β
(⊔

At

)
Gr

groups

homomorphisms

Cartesian product∏
At

multiplication componentwise

free product∐
At

group of words

Ab

abelian groups

homomorphisms

Cartesian product∏
At

addition componentwise

(external) direct sum⊕
At

xt = et for almost all t

Abcomp

compact abelian groups

continuous homomorphisms

Cartesian product
∏
At

product topology

addition componentwise

Bohr compactification

of the direct sum
⊕
At

with coproduct topology

CRng

commutative rings (with units)

unit-preserving homomorphisms

Cartesian product
∏
Rt

addition and multiplication

componentwise

tensor product of rings
⊗
Rt

Ban1

Banach spaces

linear operators ||T || ≤ 1

`∞-product

the set of all {xt}t∈T
satisfying supt∈T ||xt|| <∞

`1-sum

the set of all {xt}t∈T
satisfying

∑
t∈T ||xt|| <∞

C∗algcom1

commutative C∗-algebras

unit-preserving homom.

`∞-product

the set of all {xt}t∈T
satisfying supt∈T ||xt|| <∞

Injective

tensor product
̂̂⊗
At

Aut

Mealy automata

〈X,S, Y, δ, λ〉
where δ : S ×X → S

λ : S ×X → Y

∏
At,

∏
St,

∏
Yt

induced map δ

induced map λ

a construction

in terms

of disjoint sums

of finite

Cartesian products

Table 1 In the left-hand column there are symbols of categories together with concise
descriptions of their objects and morphisms. In the middle column, for each category
there is a description of products. Conspicuously, the cartesian product

∏
appears

in each cell with exception of Banach spaces and commutative C∗-algebras (however
this difference disappears when one changes the definition of the carrier of the object
taking the closed unit ball instead of the whole vector space). In the right-hand column
there are descriptions of respective coproducts. There are six distinct types of them:
coproducts related to the disjoint union

⊔
At; free products

∐
At; coproducts related

to directs sums
⊕
At of abelian groups; related to tensor products

⊗
At of rings;

`1-sums; a specific construction for automata.
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In the category Aut of finite Mealy automata 〈X,S, Y, δ, λ〉 (where S
denotes a set of states, X is an input alphabet, Y is an output alphabet,
δ : S ×X → S is a transition function, λ : S ×X → Y is an output function
and morphisms are triples ξ : X1 → X2, σ : S1 → S2, η : Y1 → Y2 such that
suitable diagrams commute), the product of 〈Xt, St, Yt, δt, λt〉 is the triple∏
Xt,

∏
Xt,

∏
Xt with the induced maps δ, λ and is related to that in Set,

[4]. However, coproducts are sophisticated and quite different [25], [23, 2.4.7,
3.3.15].

2.3 Recapitulation of main points

The forgetful functors from each of the categories considered above to Set
(or to Set× Set× Set in case of automata) commute with products and do
not commute with coproducts.

A similar asymmetry, albeit in a much milder form, concern equalizers and
coequalizers [23, §3.5].

A consequence of the above asymmetry product–coproduct is an analo-
gous asymmetry of limits (called also inverse limits or projective limits) and
colimits (direct limits or inductive limits) of diagrams [15, pp. 62–72].

One may distinguish two kinds of categorial duality. One, which may be
labeled as syntactic, mentioned above, is based on the formal replacing of
each morphism αβ (in a category E) by βα. The other, which may be labeled
as functional (and is an anti-equivalence, i.e., equivalence with the oppo-
site category Eop), is based on constructions related to some contravariant
hom-functor homE(−, E0). The first kind is significant in the general theory,
whereas the second yields better insight into specific categories, like these
discussed here.

3 A philosophical discussion

At this point a philosophical question arises: What features of Cantorian
Mathematics lie behind this asymmetry?

Clearly, the membership relation: element–set, x ∈ X is a basic asymmetry.
However, this explanation is not adequate here, as the following examples
show.

Let Rel denote the category of sets and binary relations. Objects are sets,
a morphism R : A→ B is a triple (R,A,B) where R ⊆ A×B. If S ⊆ B ×C
is another such relation, the composite morphism is (S ◦ R,A,C), where

S ◦R = {(a, c) ∈ A× C | ∃b∈B(a, b) ∈ R and (b, c) ∈ S}.
The empty set is the zero object. The coproduct of a family {At}t∈T of objects

in Rel is the disjoint union A =
⊔

t∈T At with obvious injections σt : At → A.
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The product is the same disjoint union A =
⊔
At with morphisms πt : A→ At

defined as the inverse relations πt = σ−1t for t ∈ T . The categorial symmetry
of Rel suggests itself.

If a set P is partially ordered by a relation ≤ and is regarded as a cate-
gory in which the morphisms a → b are exactly those pairs (a, b) for which
a ≤ b and if the greatest lower bound inf{at}t∈T of a family exists, then it is
the product of it. Analogously, sup{at}t∈T is the coproduct. Here again the
symmetry is clear.

The last two examples suggest that the product-coproduct asymme-
try of the categories shown in the table above follows from the asymmetry
of many-to-one relationship in the notion of a function f : X → Y .

Now a next question arises as to why does such many→one thinking
predominate in Mathematics. Certainly it is deeply rooted in our minds.
It is so in early arithmetic as, e.g., in 4 + 3 = 7 the natural direction is
from numbers 4, 3 to the sum 7. The opposite relation — decomposing a
number into summands — is also important but definitely secondary. Most
computations lead from given data to a result. Solving an equation appears
to be a way backwards. In calculus, functions play a vital role, whereas their
multivalued inverse relations are used only occasionally.

In the real life causes precede the effects [19, Ch. 7]. This is implicit in
common thinking, manifests in ordinary language, and also shapes mathe-
matical thinking. It is subordinated to the psychological arrow of time which
— according to Hawking [7, Ch. 9] — is determined by the thermodynamic
arrow of time. It is likely an evolutionary effect in mathematical thought.

In a preliminary search, in the context of discovery, the mathematician’s
thinking may have no preconceived direction, but systematic reasoning (as
in a proof) has a clear direction (the case of backward reasoning, from the
consequent to the antecedent, is usually an intentional, conscious reversing
of the direction).

The concept of a function has two aspects: dynamic and static. The first,
related to change and motion, was implicit in Newton’s approach, contin-
ued till the 19th century, and still somehow influences the thinking in terms
of functional dependence. Also an “input/output machine” approach, with
permissible inputs and the corresponding outputs, is dynamic.

The static conception of a function developed slowly from Euler’s analytic
form to Dedekind’s modern, purely logical and completely general notion of
a many-to-one mapping from a set to a set [3, Ch. V–VII], [6, pp. 228–232].

By its very nature, set theory is static. In the set-theoretical approach, the
dynamic conception of a function is replaced by a static relation, conceived
as a set of pairs. Time, which played the role of a distinct variable in the 18th
and 19th century, became one of space coordinates in Rn [16, pp. 123–133].
Moreover, the New Math movements of the 1960s contributed to the attitude
that time belongs to physics. On the other hand, even if formally Mathematics
expressed in terms of set theory appears static, Cantorian models of physical
processes represent a dynamic world.
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The author is indebted to Prof. Jǐŕı Rosický for paying attention to some
other important aspects of the question considered in the paper. Most of the
examples discussed here are of an “algebraic” nature, i.e., they are given by
operations whose general form is TA→ A where T : Set→ Set is a functor.
But there are also structures of “coalgebraic” nature given by A→ TA, [24].
In such a case, coproducts are preserved but not products. A typical example
are transition systems given by A → PA, where P is the power-set functor
[10, part on non-deterministic automata]. Thus, the asymmetry considered in
this paper applies to the “algebraic” part of Cantorian Mathematics while an
opposite asymmetry applies to the “coalgebraic” part of mathematics. The
former is predominant in classical mathematics (particularly in applications
to physics) while coalgebraic part is mostly stimulated by Computer Science.
The opposite one-to-many relation, for example decomposing a number into
summands or multi-valued inverse of a function, is considered as being impor-
tant but secondary in Cantorian Mathematics. While many-to-one is typical
to it, one-to-many is typical to coalgebraic mathematical theories. The ex-
ample of transition systems shows that one-to-many is not always given by
some many-to-one. Here, it reflects the non-deterministic nature of a process
where one has more ways how to go from a state of the system to another
state.

General theory of coalgebras requires category theory. Before the appear-
ance of the latter, mathematicians could deal only with asymmetric Cantorian
Mathematics; the coalgebraic part was hidden.
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